Chem. Ber. 103, 2868-2872 (1970)

Erwin Weiss, Günther Hencken und Heinrich Kühr

Kristallstrukturen und kernmagnetische Breitlinienresonanz der Alkalisilyle SiH₃M (M = K, Rb, Cs)

Aus dem Institut für Anorganische und Angewandte Chemie der Universität Hamburg

(Eingegangen am 23. April 1970)

SiH₃K, SiH₃Rb und SiH₃Cs haben bei Raumtemperatur Kristallstrukturen vom NaCl-Typ (Gitterkonstanten a = 7.23, 7.52 bzw. 7.86 Å). Hieraus resultiert für das Silyl-Anion, SiH₃⁻, ein effektiver Ionenradius von 2.2₆ Å. Die gegenüber CH₃K (NiAs-Typ) abweichenden Kristallstrukturen werden auf die mehr kugelförmige Gestalt der SiH₃⁻-Ionen zurückgeführt. Aus einer kernmagnetischen Breitlinienresonanzuntersuchung von SiH₃K ergibt sich bei Raumtemperatur eine Rotation der SiH₃-Gruppen auf ihren Gitterplätzen. Unterhalb -100° sind dagegen die Silylgruppen fixiert mit zu 2.17 Å gemessenen H–H-Abständen. Unter Zugrundelegung des normalen Si–H-Abstands folgt hieraus ein H–Si–H-Valenzwinkel des Silyl-Anions von 94 $\pm 4^{\circ}$.

Crystal Structures and Nuclear Magnetic Wide-Line Resonance of Alkali Silyl Compounds SiH_3M (M = K, Rb, Cs)

The crystal structure of SiH₃K, SiH₃Rb and SiH₃Cs is of the NaCl-type at room temperature (lattice constants a = 7.23, 7.52, and 7.86 Å, resp.). For the silyl anion, SiH₃⁻, an effective ionic radius of 2.2₆ Å can be derived. The different structure in comparison with CH₃K (NiAs-type) is explained by the more spheric shape of the SiH₃⁻-ions. A n.m.r. wide-line investigation of SiH₃K shows rotation of the SiH₃-groups at their sites at room temperature. Below --100° the SiH₃-groups are fixed. Their H--H-distances are 2.17 Å. Assuming normal Si-H-distances a H-Si-H-bond angle of 94 $\pm 4^\circ$ can be derived for the silyl anion.

Im Anschluß an Strukturbestimmungen einiger Methylalkali-Verbindungen (CH₃Li^{1, 2)}, CH₃Na und CH₃K³⁾) war es von Interesse, auch die analogen Alkalisilyle, SiH₃M, in den Kreis dieser Untersuchungen einzubeziehen. Hiervon war bisher lediglich die Struktur des Silylkaliums als vom NaCl-Typ bekannt⁴⁾. Andererseits wurden für CH₃Li und CH₃Na tetramere Assoziate und für CH₃K ein Ionengitter vom NiAs-Typ nachgewiesen.

¹⁾ E. Weiss und E. A. C. Lucken, J. organomet. Chem. 2, 197 (1964).

²⁾ E. Weiss und G. Hencken, J. organomet. Chem. 21, 265 (1970).

³⁾ E. Weiss und G. Sauermann, Angew. Chem. **80**, 123 (1968); Angew. Chem. internat. Edit. **7**, 133 (1968); Chem. Ber. **103**, 265 (1970).

⁴⁾ M. A. Ring und D. M. Ritter, J. physic. Chem. 65, 182 (1961); J. Amer. chem. Soc. 83 802 (1961).

Da sich die genannte Strukturbestimmung von SiH₃K auf nur sieben Reflexe stützt, erschien eine erneute Untersuchung unter Einbeziehung weiterer Alkalisilyle angezeigt. Unsere Untersuchungen bestätigen die Strukturbestimmung von SiH_3K , ferner konnten auch für SiH_3Rb und SiH_3Cs die *NaCl-Struktur* (Raumgruppe Fm3m) nachgewiesen werden.

Röntgenographische Untersuchung

Bei Raumtemperatur wurden von den feinkristallinen Pulvern einwandfrei kubischflächenzentriert indizierbare Diagramme (Reflexe z. T. mit $K_{\alpha 1}/K_{\alpha 2}$ -Aufspaltung) mit ausgezeichneter Übereinstimmung von beobachteten und berechneten Reflexintensitäten erhalten (vgl. Tab.).

SiH ₃ K			SiH ₃ Rb			SiH ₃ Cs			
hkl	d _{beob.} (Å)	Iber.	Ibeob.	dbeob.	Iber.	Ibeob.	$d_{beob.}$	Iber.	Ibeob.
111	4.18	5	5	4.35	38	37	4.58	81	89
002	3.60	98	100	3.77	98	100	3.96	106	100
022	2.555	57	53	2.661	53	57	2.792	72	70
113	2.179	1.7	2.2	2.267	15	17	2.379	34	39
222	2.086	16	16	2.170	17	17	2.277	23	25
004	1.8069	6	8	1.8791	6	7	1.9681	10	11
133	~	0.3		1.7235	4	6	1.7991	11	12
024	1.6164	13	16	1.6805	15	15	1.7603	22	21
224	1.4755	7	8	1.4681	8	8	1.6059	15	15
115 333		No.		1.4435	$\begin{pmatrix} 1.3 \\ 0.5 \end{pmatrix} 1.8$	3	1.5131	$\begin{pmatrix} 4.5 \\ 1.5 \end{pmatrix} 6$	5
044	1.2784	1.4	1.5	1.3283	1.6	1.6	1.3875	3.2	3.7
135				1.2702	1.1	0.7	1.3284	4	5
006 244	1.2056	$\begin{array}{c} 0.5 \\ 1.8 \end{array}$ 2.3	3	1.2513	$\begin{array}{c} 0.5\\ 2.2 \end{array}$ 2.7	3	1.3089	$\begin{pmatrix} 1.1\\5 \end{pmatrix} 6$	7
026	1.1434	1.3	1.7	1.1870	1.4	1.8	1.2416	3.3	3.6
335					0.3				
226	1.0905	0.8	0.8	1.1321	1.0	2.0			
444				11 mar.	0.2	at 1 MPA			
155						-			
046				1.0427	0.5	1.8			
246					0.8				
355									
446				0.9105	0.2	1.8			
066				*	0.8	-			
555					1	ar. 1 au			
266				0.8621	0.1	0.4			
$R = \frac{\Sigma I_{\text{beob.}} - I_{\text{ber.}} }{\Sigma I_{\text{beob.}}} = 6.5\%$					7.1 %			7.4%	
Temperaturfaktor $B = 4.3 \text{ Å}^2$				4.3 Ų			4.2 Å	2	

Netzebenenabstände und Intensitäten bei der Röntgen-Untersuchung der Alkalisilyle

	SiH ₃ K	SiH ₃ Rb	SiH ₃ Cs
Gitterkonstante a (Å)	7.23 ± 0.01	7.52 ± 0.01	7.86 ± 0.01
Zellvolumen $V(Å^3)$	377.9	425.3	485.6
Röntgenographische Dichte (g·cm ⁻³)	1.241	1.824	2.243

Zellkonstanten und Dichten der Alkalisilyle

Da die Punktgruppensymmetrie der Si-Lagen im NaCl-Gitter höher als die eines SiH_3^- -Ions ist, ist anzunehmen, daß die SiH_3^- -Ionen entweder auf ihren Gitterplätzen "rotieren" oder statistisch ungeordnete Orientierungen einnehmen. Bei Raumtemperatur ist nach ¹H-Kernresonanz-Untersuchungen der erste Fall realisiert.

Mit Hilfe der Paulingschen Ionenradien (K: 1.33 Å, Rb: 1.48 Å, Cs: 1.69 Å) läßt sich für das Silyl-Anion ein einheitlicher effektiver Radius von 2.26 ± 0.04 Å ableiten.

Interessant ist ein Vergleich mit dem im NiAs-Gitter kristallisierenden CH_3K . Hier ist jede CH₃-Gruppe nicht oktaedrisch, sondern trigonal-prismatisch von sechs K-Ionen umgeben (vgl. Abbild. 1). Die unterschiedlichen Strukturen sind

Abbild. 1. a) trigonal-prismatische Koordination der CH₃-Ionen in CH₃K, b) oktaedrische Koordination der SiH₃-Ionen in SiH₃K (Kalottenmodelle)

offensichtlich durch die mehr kugelförmige Gestalt der SiH₃-Gruppen bedingt. Die CH₃-Gruppe besitzt demgegenüber eine ausgeprägtere trigonale Gestalt und erlaubt eine dichtere Ionenpackung bei einer Struktur vom NiAs-Typ. Dies kommt in den Kalottenmodellen der Abbild. 1 sowie bei einem Vergleich der Dichten (CH₃K: 1.37 g·cm⁻³, SiH₃K: 1.24 g·cm⁻³) deutlich zum Ausdruck.

Untersuchung der ¹H-Breitlinienresonanz

Am festen polykristallinen Silylkalium wurden Breitlinienkernresonanzmessungen im Temperaturbereich von -25 bis -180° durchgeführt. Das aus den Spektren bestimmte 2. Moment

$$S_2 = \int_{-\infty}^{+\infty} F(H) \Delta H^2 dH / \int_{-\infty}^{+\infty} F(H) dH \quad [G^2]$$

zeigte folgenden Verlauf mit der Temperatur (Abbild. 2):

Abbild. 2. Temperaturabhängigkeit des 2. Moments von SiH₃K

Dieses Verhalten kann wie folgt interpretiert werden:

Unterhalb von ca. -100° sind die Silylgruppen in ihrer Lage fixiert. Aus dem gemessenen 2. Moment $S_2 = 8.6 \text{ G}^2$ (Abbild. 2) läßt sich nach der Formel⁵⁾

$$S_2 = \frac{3}{5} I (I+1) N^{-1} g_I^2 u_k^2 \sum_{i=k}^k r_{ik}^{-6} [G^2]$$

der Abstand r_{ik} der Protonen in einer SiH₃-Gruppe berechnen. Er ergibt sich zu 2.17 \pm 0.05 Å. (Der intermolekulare Anteil zum 2. Moment wurde zu etwa 1.5 G² abgeschätzt.)

Würde man für den Winkel H–Si–H den Tetraederwinkel annehmen, so ergäbe sich ein Si–H-Abstand von 1.32 Å. Dieser Abstand ist als völlig unwahrscheinlich anzuschen, da alle bisher nach anderen Methoden bestimmten Si–H-Abstände bei 1.48 ± 0.05 Å liegen⁶⁾.

Nimmt man umgekehrt an, daß der Si-H-Abstand mit 1.48 Å vorgegeben ist und berechnet man den Winkel H-Si-H, so erhält man 94 \pm 4°. Dies spricht für einen erheblichen p-Anteil der Si-H-Bindung, wie er analog auch beim CH₃K diskutiert wurde ⁷).

Oberhalb von ca. -75° ist die Silylgruppe in ihrer Lage nicht mehr fixiert, auch bei Raumtemperatur ist jedoch hauptsächlich nur die Rotation um die dreizählige Achse angeregt. Die Bedingung

$$S_{2, \text{ rot.}} = \frac{1}{4} S_{2, \text{ starr}}$$

die für diesen Fall⁸⁾ gilt, ist angenähert erfüllt. Wahrscheinlich ist aber auch bei Raumtemperatur die Umorientierungsfrequenz der dreizähligen Achse schon relativ groß, so daß röntgenographisch nur eine statistische Verteilung aller Orientierungen beobachtet werden kann. Eine schnelle Rotation der dreizähligen Achse erscheint jedoch ausgeschlossen, da sich für diesen Fall ein deutlich kleineres 2. Moment ergeben müßte.

⁵⁾ J. H. van Vleck, Phys. Rev. 74, 1168 (1948).

⁶⁾ Tables of interatomic distances and configurations in molecules and ions, London (1958, 1965).

⁷⁾ G. Sauermann, Dissertation, Univ. Hamburg 1969.

⁸⁾ H. S. Gutowsky und G. E. Pake, J. chem. Physics 18, 162 (1950).

Wir danken herzlich dem Fonds der Chemischen Industrie für Sachbeihilfen, der Hans-Heinrich-Hütte, Langelsheim/Harz, für die Überlassung von Rubidium- und Cäsiummetall und Herrn Professor Dr. E. Amberger, München, für eine Substanzprobe von Silylkalium.

Beschreibung der Versuche

Die Alkalisilyle wurden im wesentlichen nach Amberger et al.⁹⁾ durch Umsetzung von Silan mit überschüssigem Alkalimetall in Monoglyme bei Raumtemperatur dargestellt:

 $SiH_4 + M \rightarrow SiH_3M + \frac{1}{2}H_2$; daneben $SiH_4 + 2M \rightarrow SiH_3M + MH$

Darstellung von SiH₃K

Zur Umsetzung dienten dickwandige, am oberen Ende ausgezogene Reaktionsrohre (Vol. ca. 400 ccm) mit zwei weiteren seitlichen Ansatzrohren. Letztere wurden nach Einfüllen (Schutzgas: N₂) von ca. 5 g einer Na-K-Legierung (77.3 Gew.- % K) abgeschmolzen. Sodann wurden nach Evakuieren ca. 50 ccm getrocknetes Monoglyme einkondensiert und hierzu, unter Kühlung mit flüss. N₂, ca. 1.5 *l* (67 mMol) Silan. Nach Abschmelzen des zentralen Rohransatzes blieb das Gefäß ca. 1 Woche lang bei 20° stehen. Dabei entfärbte sich die zunächst blaue Lösung. Das Gefäß wurde über die seitlichen Rohransätze vorsichtig geöffnet, wobei H₂ über ein Hg-Ventil entweichen konnte; die Lösung wurde von der nun schwammartigen Legierung abfiltriert, das Filtrat unter *n*-Octan-Zusatz eingedampft und das zurückbleibende, feinkristalline, farblose bis hellgelbe SiH_3K mehrere Stdn. bei 10⁻³ Torr/60° getrocknet.

Darstellung von SiH₃Rb und SiH₃Cs

Diese Verbindungen wurden analog dargestellt, jedoch unter Verwendung der reinen Alkalimetalle (je ca. 3 g für 500 ccm Silan), welche vorher in dünnwandigen Ampullen in das Reaktionsgefäß eingebracht und nach Zertrümmern i. Vak. ausgeschmolzen wurden. Die Reaktionsdauer betrug für SiH₃Rb 3-4 Wochen, für SiH₃Cs 2 Wochen. Die nach Trocknen als gelbe Kristallpulver erhaltenen Substanzen sind äußerst luft- und feuchtigkeitsempfindlich. Aus konzentrierten Lösungen kristallisierte bei längerem Stehenlassen SiH₃Cs in bis zu 2 mm großen farblosen Würfeln.

Alle Präparate wurden nach einer bereits früher beschriebenen Aufnahmetechnik¹⁰⁾ mit Hilfe eines Zählrohrgoniometers untersucht (Cu-K_{α}-Strahlung, $\lambda = 1.54178$ Å).

[148/70]

⁹⁾ E. Amherger, R. Römer und A. Layer, J. organomet. Chem. 12, 417 (1968).

¹⁰⁾ E. Weiss und W. Büchner, Z. anorg. allg. Chem. 330, 251 (1964).